Abstract

Belief propagation (BP) is a popular method for performing probabilistic inference on graphical models. In this work, we enhance BP and propose self-guided belief propagation (SBP) that incorporates the pairwise potentials only gradually. This homotopy continuation method converges to a unique solution and increases the accuracy without increasing the computational burden. We provide a formal analysis to demonstrate that SBP finds the global optimum of the Bethe approximation for attractive models where all variables favor the same state. Moreover, we apply SBP to various graphs with random potentials and empirically show that: (i) SBP is superior in terms of accuracy whenever BP converges, and (ii) SBP obtains a unique, stable, and accurate solution whenever BP does not converge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.