Abstract

In our current best cosmological model, the vast majority of matter in the universe is dark, consisting of yet undetected, nonbaryonic particles that do not interact electro-magnetically. So far, the only significant evidence for dark matter has been found in its gravitational interaction, as observed in galaxy rotation curves or gravitational lensing effects. The inferred dark matter agglomerations follow almost universal mass density profiles that can be reproduced well in simulations, but have eluded an explanation from a theoretical viewpoint. Forgoing standard (astro-)physical methods, I show that it is possible to derive these profiles from an intriguingly simple mathematical approach that directly determines the most likely spatial configuration of a self-gravitating ensemble of collisionless dark matter particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.