Abstract

Exploring electrical transport in a single individual nanowire provides unique opportunities to fundamental research and practical applications in nanowire-based electronics as well as energy applications. However, measuring such electrical transport in an individual nanowire generally involves nanowire release process followed by electrode patterning steps, which are difficult and tedious tasks. We demonstrate a simple in situ method for rapid measurement of the electrical transport in a single individual copper nanowire that is grown by template-assisted electrodeposition method. By depositing a thin metal layer on top of the nanowire template, a single individual nanowire circuit can be easily formed in situ by self-limiting the growth of other entire nanowires that are not connected, thereby creating a single individual nanowire contact. The measurement results are shown to be reliable, with average electrical resistivity value of 3.55μΩ·cm, which is in a good agreement with theoretical value. We also show that this method is superior to oxidation due to the in situ measurement environment. This self-formed platform not only shows a convenient method for transport property measurement, but it also suggests a possible utilization to future single nanowire-based applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.