Abstract

We give a quantum field theoretical derivation of the scalar Abraham-Lorentz-Dirac (ALD) equation and the self-force for a scalar charged particle interacting with a quantum scalar field in curved spacetime. We regularize the causal Green's function using a quasi-local expansion in the spirit of effective field theory and obtain a regular expression for the self-force. The scalar ALD equation obtained in this way for the classical motion of the particle checks with the equation obtained by Quinn earlier \cite{Quinn}. We further derive a scalar ALD-Langevin equation with a classical stochastic force accounting for the effect of quantum fluctuations in the field, which causes small fluctuations on the particle trajectory. This equation will be useful for the study of stochastic motion of charges under the influence of both quantum and classical noise sources, derived either self-consistently (as done here) or put in by hand (with warnings). We show the possibility of secular effects from such stochastic influences on the trajectory that may impact on the present calculations of gravitational waveform templates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.