Abstract

In this study, an analytical formula for the self-focusing length of a radially polarized beam (RPB) is first derived, which has a similar behavior to the semi-empirical Marburger formula of a Gaussian beam, and is beneficial to quantitatively and qualitatively analyze practical experimental scenarios. However, the relation of the self-focusing length with the states of polarization (SoPs) was evaluated, and it was found that RPB with spatially inhomogeneous SoP at the field cross-section can retain a further self-focusing length compared to a beam with a spatially homogeneous one. The influence of the topological charge on the self-focusing length is explored, which shows that RPB with a low topological charge can achieve a high-power density at a relatively further receiver plane. Therefore, it is demonstrated that the RPB as a laser source not only extends the self-focusing length, but also improves the power density of the target. With the help of RPB, it is possible to realize a controllable self-focusing length and a high target optical power density, which may have potential applications in fine optical manipulation, optical communication, high-power long-range laser atmospheric propagation, and related areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call