Abstract

Stability of a rotor system induced by Coulomb friction in joints is investigated both theoretically and experimentally. The vibrating system consists of two shafts supported flexibly and connected by three universal joints including a cross-groove (CG) joint. The Coulomb friction in a CG joint, which is one of the most destabilizing joints among practically used ones, is treated. The friction is assumed to be a function of the relative angular velocity between the connected shafts. Three stabilizing effects are investigated: the initial intersecting angle in the CG joint, the asymmetry of the support stiffness and a dynamic damper (D/D). As a result, it is found that the initial intersecting angle has a remarkable stabilizing effect; D/D expands the stable region of the system with an initial intersecting angle; the asymmetry of the support stiffness also has a stabilizing effect on the system with an initial intersecting angle. These stabilizing effects are experimentally confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.