Abstract

A dust density wave field is observed in a cloud of nanodust particles confined in a radio frequency plasma. Simultaneous measurements of the dust properties, grain size and density, as well as the wave parameters, frequency and wave number, allow for an estimate of the ion density, ion drift velocity, and the dust charge using a hybrid model for the wave dispersion. It appears that the charge on the dust grains in the cloud is drastically reduced to tens of elementary charges compared with isolated dust particles in a plasma. The charge is much higher at the cloud's periphery, i.e., towards the void in the plasma center and also towards the outer edge of the cloud.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.