Abstract

We discuss the evolution in time of a scalar field under the influence of a random potential and diffusion. The cases of a short-correlation in time and of stationary potentials are considered. In a linear approximation and for sufficiently weak diffusion, the statistical moments of the field grow exponentially in time at growth rates that progressively increase with the order of the moment; this indicates the intermittent nature of the field. Nonlinearity halts this growth and in some cases can destroy the intermittency. However, in many nonlinear situations the intermittency is preserved: high, persistent peaks of the field exist against the background of a smooth field distribution. These widely spaced peaks may make a major contribution to the average characteristics of the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.