Abstract
This paper presents analytical conditions of self-equilibrium and super-stability for the regular truncated tetrahedral tensegrity structures, nodes of which have one-to-one correspondence to the tetrahedral group. These conditions are presented in terms of force densities, by investigating the block-diagonalized force density matrix. The block-diagonalized force density matrix, with independent sub-matrices lying on its leading diagonal, is derived by making use of the tetrahedral symmetry via group representation theory. The condition for self-equilibrium is found by enforcing the force density matrix to have the necessary number of nullities, which is four for three-dimensional structures. The condition for super-stability is further presented by guaranteeing positive semi-definiteness of the force density matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.