Abstract
This study aimed to develop a self-emulsifying drug delivery system (SEDDS) of celecoxib (CEL) for suppressed delay in oral absorption under impaired gastric motility. A pseudo-ternary phase diagram was constructed for the determination of the optimal component ratio in SEDDS of CEL (SEDDS/CEL), and the SEDDS/CEL was physicochemically characterized. A pharmacokinetic study on orally dosed CEL samples (5-mg CEL/kg) was carried out in normal and propantheline (PPT)-treated rats to mimic impaired gastric motility. SEDDS/CEL rapidly formed a fine emulsion with a mean size of 147nm in distilled water and significantly improved the dissolution behavior of CEL under pH 1.2 condition with a 20-fold higher dissolved amount than crystalline CEL. In normal rats, orally dosed SEDDS/CEL provided a 4.6-fold higher systemic exposure than that of crystalline CEL, due to the improved dissolution properties of CEL. Crystalline CEL showed delayed and decreased oral absorption of CEL in PPT-treated rats as evidenced by a 6.9-h-delayed mean absorption time and only 12% of the systemic exposure of CEL compared with those in normal rats. In contrast, SEDDS/CEL enhanced the oral absorption of CEL with a 14.6-fold higher systemic exposure with significant suppression of delay in absorption than crystalline CEL even in PPT-treated rats. SEDDS/CEL could be an efficacious option for suppressing delay in CEL absorption even under impairment of gastric motility, possibly leading to rapid and reproducible management of severe acute pain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.