Abstract

We give sufficient conditions for a geometrically finite Kleinian group G acting in the hyperbolic space H n to have co-Hopf property, i.e., not to contain non-trivial proper subgroups isomorphic to itself. We provide examples of freely indecomposable geometrically finite non-elementary Kleinian groups which are not co-Hopf if our sufficient condition does not hold. We prove that any topologically tame non-elementary Kleinian group in dimension 3 can not be conjugate by an isometry to its proper subgroup.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.