Abstract

Accurate determination of electronic transport properties of semiconductor wafers with modulated free carrier absorption (MFCA) and multiparameter fitting requires the total elimination of instrumental response from the MFCA signals. In this paper, an approach to eliminate the effect of instrumental response on the frequency dependence of MFCA amplitude and phase is developed both theoretically and experimentally to simultaneously determine the transport properties (minority-carrier lifetime, carrier diffusion coefficient, and front surface recombination velocity) of silicon wafers. Experimental results showed that with the proposed method the instrumental frequency response was fully eliminated from the experimental MFCA data and had no impact on the multiparameter fitting, while with conventional methods the accuracy of the fitted transport parameters was influenced detrimentally by the errors of the measured instrumental frequency responses, in particular for the minority-carrier lifetime and the front surface recombination velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.