Abstract

Using the method of matched asymptotic expansions, we derive a general expression for the speed of a prolate spheroidal electrocatalytic nanomotor in terms of interfacial potential and physical properties of the motor environment in the limit of small Debye length and Péclet number. This greatly increases the range of geometries that can be handled without resorting to numerical simulations, since a wide range of shapes from spherical to needle-like, and in particular the common cylindrical shape, can be well-approximated by prolate spheroids. For piecewise-uniform distribution of surface cation flux with fixed average absolute value, the mobility of a prolate spheroidal motor with a symmetric cation source/sink configuration is a monotonically decreasing function of eccentricity. A prolate spheroidal motor with an asymmetric sink/source configuration moves faster than its symmetric counterpart and can exhibit a non-monotonic dependence of motor speed on eccentricity for a highly asymmetric design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.