Abstract

Eigenfunctions are shown to constitute privileged coordinates of self-dual Einstein spaces with the underlying governing equation being revealed as the general heavenly equation. The formalism developed here may be used to link algorithmically a variety of known heavenly equations. In particular, the classical connection between Plebański’s first and second heavenly equations is retrieved and interpreted in terms of eigenfunctions. In addition, connections with travelling wave reductions of the recently introduced TED equation which constitutes a 4 + 4-dimensional integrable generalisation of the general heavenly equation are found. These are obtained by means of (partial) Legendre transformations. As a particular application, we prove that a large class of self-dual Einstein spaces governed by a compatible system of dispersionless Hirota equations is genuinely four-dimensional in that the (generic) metrics do not admit any (proper or non-proper) conformal Killing vectors. This generalises the known link between a particular class of self-dual Einstein spaces and the dispersionless Hirota equation encoding three-dimensional Einstein–Weyl geometries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.