Abstract

Cosmic strings are considered in two types of gauged sigma models, which generalize the gravitating Abelian Higgs model. The two models differ by whether the U(1) kinetic term is of the Maxwell or Chern-Simons form. We obtain the self-duality conditions for a general two-dimensional target space defined in terms of field dependent "dielectric functions". In particular, we analyze analytically and numerically the equations for the case of O(3) models (two-sphere as target space), and find cosmic string solutions of several kinds as well as gravitating vortices. We classify the solutions by their flux and topological charge. We note an interesting connection between the Maxwell and Chern-Simons type models, which is responsible for simple relations between the self-dual solutions of both types. There is however a significant difference between the two systems, in that only the Chern-Simons type sigma model gives rise to spinning cosmic vortices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.