Abstract

AbstractRegular maps are cellular decompositions of surfaces with the “highest level of symmetry”, not necessarily orientation‐preserving. Such maps can be identified with three‐generator presentations of groups G of the form G = 〈a, b, c|a2 = b2 = c2 = (ab)k = (bc)m = (ca)2 = … = 1〉; the positive integers k and m are the face length and the vertex degree of the map. A regular map (G;a, b, c) is self‐dual if the assignment b↦b, c↦a and a↦c extends to an automorphism of G, and self‐Petrie‐dual if G admits an automorphism fixing b and c and interchanging a with ca. In this note we show that for infinitely many numbers k there exist finite, self‐dual and self‐Petrie‐dual regular maps of vertex degree and face length equal to k. We also prove that no such map with odd vertex degree is a normal Cayley map. Copyright © 2011 Wiley Periodicals, Inc. J Graph Theory 69:152‐159, 2012

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call