Abstract

In this study, we demonstrated that the reactive species generation of Bi2MoO6 under visible light can be regulated by Bi self-doping via a simple soft-chemical method. Density functional theory calculations and systematical characterization results revealed that Bi self-doping could not only promote the separation and transfer of photogenerated electron–hole pairs of Bi2MoO6 but also alter the position of valence and conduction band without changing its preferential crystal orientations, morphology, visible light absorption as well as band gap energy. The photocatalytic removal of NO and products determination revealed that the enhanced generation of superoxide could improve the oxidation of NO to NO2 while OH and photogenerated holes mainly contributed to the further oxidation of NO2 to NO3−. Photostability and NO absorbtion tests demonstrated that NO3− on the surface of catalysts occupied the NO absorption sites and caused the deactivation of catalysts. This study provides new insight into the different effects of photogenerated reactive species on NO removal and sheds light on the design of highly efficient visible light-driven photocatalysts for NO removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.