Abstract

Perylene diimide (PDI) with high electron affinities are promising candidates for applications in polymer solar cells (PSCs). In addition, the strength of π‐deficient backbones and end‐groups in an n‐type self‐dopable system strongly affects the formed end‐group‐induced electronic interactions. Herein, a series of amine/ammonium functionalized PDIs with excellent alcohol solubility are synthesized and employed as electron transporting layers (ETLs) in PSCs. The electron transfer properties of the resulting PDIs are dramatically tuned by different end‐groups and π‐deficient backbones. Notably, electron transfer is observed directly in solution in self‐doped PDIs for the first time. A significantly enhanced power conversion efficiency of 10.06% is achieved, when applying the PDIs as ETLs in PTB7‐Th:PC71BM‐based PSCs. These results demonstrate the potential of n‐type organic semiconductors with stable n‐type doping capability and facile solution processibility for future applications of energy transition devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.