Abstract

The self-discharge of an electric double-layer capacitor with composite activated carbon electrodes and aqueous electrolyte (1 M MgSO4) was studied in detail. Under a long-term potentiostatic charge (stabilization), a decrease in the discharge capacity was observed in the region of voltages exceeding 0.8 V. The self-discharge process consists of two phases. In the initial phase, the cell voltage drop is due to the charge redistribution inside electrodes. During the main phase, the charge transfer between the electrodes determines the voltage drop. The optimal stabilization time of the self-discharge was found to be 50 min at 1.4 V. Hydrophilization of the negative electrode occurred during long-term polarization due to the formation of epoxy functional groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call