Abstract

The dismal prognosis for glioblastoma multiform (GBM) patients is primarily attributed to the highly invasive tumor residual that remained after surgical intervention. The development of precise intraoperative imaging and postoperative residual removal techniques will facilitate the gross total elimination of GBM. Here, a self-disassembling porphyrin lipoprotein-coated calcium peroxide nanoparticles (PLCNP) is developed to target GBM via macropinocytosis, allowing for fluorescence-guided surgery of GBM and improving photodynamic treatment (PDT) of GBM residual by alleviating hypoxia. By reducing self-quenching and enhancing lysosome escape efficiency, the incorporation of calcium peroxide (CaO2) cores in PLCNP amplifies the fluorescence intensity of porphyrin-lipid. Furthermore, the CaO2 core has diminished tumor hypoxia and improves the PDT efficacy of PLCNP, enabling low-dose PDT and reversing tumor progression induced by hypoxia aggravation following PDT. Taken together, this self-disassembling and oxygen-generating porphyrin-lipoprotein nanoparticle may serve as a promising all-in-one nanotheranostic platform for guiding precise GBM excision and empowering post-operative PDT, providing a clinically applicable strategy to combat GBM in a safe and effective manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.