Abstract

In this work, we investigated the use of real-time functional magnetic resonance imaging (fMRI) with neurofeedback training (NFT) to teach volitional down-regulation of the auditory cortex (AC) using directed attention strategies as there is a growing interest in the application of fMRI-NFT to treat neurologic disorders. Healthy participants were separated into two groups: the experimental group received real feedback regarding activity in the AC; the control group was supplied sham feedback yoked from a random participant in the experimental group and matched for fMRI-NFT experience. Each participant underwent five fMRI-NFT sessions. Each session contained 2 neurofeedback runs where participants completed alternating blocks of “rest” and “lower” conditions while viewing a continuously-updated bar representing AC activation and listening to continuous noise. Average AC deactivation was extracted from each closed-loop neuromodulation run and used to quantify the control over AC (AC control), which was found to significantly increase across training in the experimental group. Additionally, behavioral testing was completed outside of the MRI on sessions 1 and 5 consisting of a subjective questionnaire to assess attentional control and two quantitative tests of attention. No significant changes in behavior were observed; however, there was a significant correlation between changes in AC control and attentional control. Also, in a neural assessment before and after fMRI-NFT, AC activity in response to continuous noise stimulation was found to significantly decrease across training while changes in AC resting perfusion were found to be significantly greater in the experimental group. These results may be useful in formulating effective therapies outside of the MRI, specifically for chronic tinnitus which is often characterized by hyperactivity of the primary auditory cortex and altered attentional processes. Furthermore, the modulation of attention may be useful in developing therapies for other disorders such as chronic pain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.