Abstract

The method of molecular dynamics is used to investigate the self-diffusion processes in the nickel lattice activated by a shock wave. It is demonstrated that the main self-diffusion mechanism is crowdion one. Ranges of shock wave velocities are established in which anomalous decrease of the self-diffusion coefficient caused by the formation of crowdion complexes is observed. In addition, it is demonstrated that when the wave velocity increases, the self-diffusion coefficients approach values corresponding to those of the metal in the liquid state, and the defect migration energy decreases. These results are compared with the data obtained for the crystal lattice with a structural defect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call