Abstract

The diffusion of particles in suspension is investigated by a thermostat based on fluctuating hydrodynamics for dynamic simulations of implicit-solvent coarse-grained model which can take into account both hydrodynamic and Brownian effects. Particles with cut-and-shifted Lennard-Jones and Gaussian-core potential are studied. The results show that their diffusion process can be characterized by three regimes: ballistic motion, short-time diffusion and long-time diffusion. We observe that the mean square displacement (MSD) of regime I, ballistic motion, is proportional to t2. For the other two regimes, its MSD is proportional to t with different slopes. Furthermore, we study the diffusion coefficients of spherical particles from MSD at different volume fractions. For the cut-and-shifted Lennard-Jones potential model, we observe the diffusion coefficients decrease monotonously with the increase of volume fraction (0.02–0.3), consistent with the results of the experiment. However, for the Gauss-core potential model, the curve of long-time self-diffusion coefficient as a function of dimensional density (0.001 to 1) appears to be nonmonotonic. It shows that the long-time self-diffusion coefficient decreases monotonically when the dimensional density is below 0.3, and then increases anomalously when the dimensionless density passes through 0.3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call