Abstract

The self-diffusion coefficients of water and organic solvents in the high-temperature high-pressure conditions are studied by using high-temperature NMR and MD simulation methods. The experimental results are analyzed using a scheme based on the solvation shell relaxation time obtained by MD simulation. The dynamic effect of hydrogen bonding is discussed through the comparison between water and a nonpolar organic solvent, benzene, over a wide range of density and temperature. The hydrogen-bonding effects are as follows: (1) the self-diffusion coefficient of water depends on density more weakly than that of benzene, (2) the self-diffusion coefficient of water at the ambient density depends on temperature more strongly than that of benzene at the density, (3) the turnover from the mobile-shell type to the in-shell type with increasing density does not occur in supercritical water up to the ambient density, whereas such turnover is observed in benzene. These contrasts are reflecting the dynamic effect of the anisotropic attractive interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call