Abstract

Cracking due to temperature and restraint in mass concrete is an important issue. A temperature stress testing machine (TSTM) is an effective test method to study the mechanism of temperature cracking. A synchronous closed loop federated control TSTM system has been developed by adopting the design concepts of a closed loop federated control, a detachable mold design, a direct measuring deformation method, and a temperature deformation compensation method. The results show that the self-developed system has the comprehensive ability of simulating different restraint degrees, multiple temperature and humidity modes, and closed-loop control of multi-TSTMs during one test period. Additionally, the direct measuring deformation method can obtain a more accurate deformation and restraint degree result with little local damage. The external temperature deformation affecting the concrete specimen can be eliminated by adopting the temperature deformation compensation method with different considerations of steel materials. The concrete quality of different TSTMs can be guaranteed by being vibrated on the vibrating stand synchronously. The detachable mold design and assembled method has greatly overcome the difficulty of eccentric force and deformation.

Highlights

  • Cracking due to temperature and restraint in mass concrete, such as concrete dams, highway pavement, and bridge decks, can be observed

  • °C and the testing is approximately one hour, so that the concrete deformation is only caused by the external temperature deformation

  • C, which shows that the steel shaft is heated evenly by being coated with the hour, so that the concrete deformation is only caused by the external temperature deformation

Read more

Summary

Introduction

Cracking due to temperature and restraint in mass concrete, such as concrete dams, highway pavement, and bridge decks, can be observed. It is a critical concern to study the mechanism of temperature cracks through the testing method [1,2]. To investigate the performance of concrete after it is casted, some testing programs, such as the so-called ring tests, plate tests, uniaxial restraint, and substrate restraint tests, were conducted [3]. The cracking reasons may be complex and most of the influencing factors on cracking sensitivity can be investigated at the same time by the uniaxial restraint tests [4]. The temperature stress test (TST) method, by adopting the uniaxial restraint test, is developed to determine the mechanical and thermal behavior of concrete.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.