Abstract
Autologous proteins are continuously processed and presented in the form of peptides associated with self major histocompatibility (MHC) molecules at the surface of antigen-presenting cells for interaction with autoreactive T cells. During thymic selection, the presentation of self peptides is an essential element in the establishment of the T cell repertoire. Developing T cells which recognize self peptide/self MHC complexes with sufficient affinity are clonally deleted. However, we and others have recently demonstrated that a variety of self peptides, despite their high binding affinity to MHC molecules, never reach the threshold of presentation to ensure negative selection (cryptic self peptides). This mechanism may have been selected to avoid excessive purging of T cell repertoire during ontogeny. However, T cells directed to cryptic self determinants represent a continuous threat for the initiation of autoimmunity in adults. Supporting this view, recent studies have documented the involvement of cryptic self peptide presentation in different autoimmune diseases. In this article, we examine the factors that govern the selection of self peptides for presentation to autoreactive T cells in vivo and discuss their contribution to both the induction and the maintenance of self tolerance. In addition, we analyze the mechanisms by which the hierarchy of determinants on a self protein can be disrupted, thereby leading to the presentation of previously cryptic self peptides and the induction of an autoimmune T-cell-mediated process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.