Abstract

Self-delivery of photosensitizer and immune modulator to tumor site is highly recommendable to improve the photodynamic immunotherapy yet remains challenging. Herein, self-delivery photoimmune stimulators (designated as iPSs) are developed for photodynamic sensitized tumor immunotherapy. Carrier-free iPSs are constructed by optimizing the noncovalent interactions between the pure drugs of chlorine e6 (Ce6) and NLG919, which avoid the excipients-raised toxicity and immunogenicity. Intravenously administrated iPSs prefer to passively accumulate on tumor tissues for a robust photodynamic therapy (PDT) with the induction of immunogenetic cell death (ICD) cascade to activate cytotoxic T lymphocytes (CTLs) and initiate antitumor immune response. Meanwhile, the concomitant delivery of NLG919 inhibits the activation of indoleamine 2,3-dioxygenase 1 (IDO-1) to reverse the immunosuppressive tumor microenvironment. Ultimately, the photodynamic sensitized immunotherapy with iPSs efficiently inhibit the primary and distant tumor growth with a low system toxicity, which would shed light on the development of self-delivery nanomedicine for clinical transformation in tumor precision therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call