Abstract

The use of ultraviolet-C (UV-C) light-emitting diodes (LEDs) as a water sterilization light source poses a serious challenge in heat dissipation. High junction temperatures reduce the radiant power and lifespan of UV-C LEDs. In this study, a novel self-cooling water disinfection reactor was developed to dissipate Joule heat from UV-C LEDs. The advantage of the self-cooling design is that cooling can be achieved without requiring additional power consumption and cooling liquid. The effects of the water flow rate and driving current of UV-C LEDs on the sterilization of Escherichia coli were investigated for a traditional flow-through reactor and a reactor with self-cooling. The experimental results indicated that an increase in driving current resulted in a considerable increase in the LED temperature of the flow-through reactor but only a marginal increase in the LED temperature of the self-cooling reactor. Under a driving current of 150 mA, the LED temperature of the self-cooling reactor was 55.5°C less than that of the flow-through reactor. The time required by the self-cooling reactor to reach the steady state decreased as the water flow rate increased. Under a flow rate of 100 mL/min, the self-cooling reactor reached the steady state within 62 and 70 s when the driving current was 100 and 150 mA, respectively. Moreover, the average irradiance and inactivation values of the self-cooling reactor were up to 16.5% and 26.0% higher than those of the flow-through reactor, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call