Abstract
Brunner et al. [Phys. Rev. E 85 (2012) 05111] have claimed that, "essentially only the smallest machines can approach Carnot efficiency". We have verified this claim by raising self-contained four-qubit quantum refrigerator, and we have shown that according to concepts of virtual qubit, it can reach the maximum efficiency in other words Carnot efficiency. But its efficiency, such as self-contained three-qubit quantum refrigerator is not universal. We also investigated a special case of self-contained four-qubit quantum refrigerator, in other words self-contained four-qubit quantum refrigerator with two hot baths in the same temperature. We demonstrated that its efficiency has the form as efficiency of a self-contained three-qubit quantum refrigerator. In other words, from the perspective of efficiency, this particular model is equivalent to self-contained three-qubit quantum refrigerator. We also demonstrated the efficiency of this particular model in the Carnot limit that is independent from details of system model, but only depends on the environmental temperatures. Also, we raised a system that consists of n-qubit which acts as a refrigerator. According to self-contained four-qubit quantum refrigerator, we also investigated a special case of self-contained n-qubit quantum refrigerator — a self-contained n-qubit quantum refrigerator with (n - 2) baths in the same temperature. We considered the three different special situations of the n-qubit refrigerator and demonstrated their efficiency in three different situations which has the form as efficiency of self-contained three-qubit quantum refrigerator. In this special situations, (n - 2) qubits are in thermal contact with isothermal heat baths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.