Abstract
The adsorption of benzene on the Si(100) surface is studied theoretically using the self-consistent van der Waals density functional (vdW-DF) method. The adsorption energies of two competing adsorption structures, butterfly (BF) and tight-bridge (TB) structures, are calculated with several vdW-DFs at saturation coverage. Our results show that recently proposed vdW-DFs with high accuracy all prefer TB to BF, in accord with more accurate calculations based on exact exchange and correlation within the random phase approximation. Detailed analyses reveal the important roles played by the molecule-surface interaction and molecular deformation upon adsorption, and we suggest that their precise description is prerequisite for accurate prediction of the most stable adsorption structure of organic molecules on semiconductor surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.