Abstract

We study superconducting transport in quasi–one-dimensional homogeneous wires in the cases of both equilibrium and nonequilibrium quasiparticle populations, using the quasiclassical Green's function technique. We consider superconductors with arbitrary current densities and impurity concentrations ranging from the clean to the dirty limit. Local current conservation is guaranteed by ensuring that the order parameter satisfies the self-consistency equation at each point. For equilibrium transport, we compute the current, the order parameter amplitude, and the quasiparticle density of states as a function of the superfluid velocity, temperature, and disorder strength. Nonequilibrium is characterized by incoming quasiparticles with different chemical potentials at each -end of the superconductor. We calculate the profiles of the electrostratic potential, order parameter, and effective quasiparticle gap. We find that a transport regime of current-induced gapless superconductivity can be achieved in clean superconductors, the stability of this state being enhanced by nonequilibrium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.