Abstract

A spatio-temporal theoretical model of pulsed microwave discharge was developed. This model is based on the macroscopic continuity equation for electrons and on the wave equation for an electromagnetic wave passing through the discharge plasma. These equations were solved together and in a self-consistent manner. For simplicity, the continuity equation was solved in one dimension only and the electromagnetic wave was assumed to be plane and transversal. Both equations were solved numerically and the spatio-temporal dependences of electron concentration and the amplitude of the microwave electric field were obtained. It was found that the discharge development depends, significantly, on the initial spatial distribution of electron concentration. Two different cases were studied: the discharge development during the first microwave pulse only and after several successive pulses. The calculations were performed particularly for the discharge in nitrogen. The results were compared with experimental data from our previous work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.