Abstract
The self-consistent relaxation theory is employed to describe the collective ion dynamics in strongly coupled Yukawa classical one-component plasmas. The theory is applied to equilibrium states corresponding to intermediate screening regimes with appropriate values of the structure and coupling parameters. The information about the structure (the radial distribution function and the static structure factor) and the thermodynamics of the system are sufficient to describe collective dynamics over a wide range of spatial scales, namely, from the extended hydrodynamic to the microscopic dynamics scale. The main experimentally measurable characteristics of the equilibrium collective dynamics of ions-the spectrum of the dynamic structure factor, the dispersion parameters, the speed of sound, and the sound attenuation-are determined within the framework of the theory without using any adjustable parameters. The results demonstrate agreement with molecular dynamics simulations. Thus a direct realization is presented of the key idea of statistical mechanics: for the theoretical description of the collective particle dynamics in equilibrium fluids it is sufficient to know the interparticle interaction potential and the structural characteristics. Comparison with alternative or complementary theoretical approaches is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.