Abstract

We derive an exact equation of motion for the reduced density matrices of individual subsystems of quantum many-body systems of any lattice dimension and arbitrary system size. Our projection operator based theory yields a highly efficient analytical and numerical approach. Besides its practical use it provides a novel interpretation and systematic extension of mean-field approaches and an adaption of open quantum systems theory to settings where a dynamically evolving environment has to be taken into account. We show its high accuracy for two significant classes of complex quantum many-body dynamics, unitary evolutions of non-equilibrium states in closed and stationary states in driven-dissipative systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call