Abstract
We propose a self-consistent molecular theory of conformational properties of flexible polymers in melts and solutions. The method employs the polymer reference interaction site model for the intermolecular correlations and the Green function technique for the intramolecular correlations. We demonstrate this method on n-alkane molecules in different environments: water, hexane, and in melt, corresponding to poor, good, and theta condition, respectively. The numerical results of the intramolecular correlation function, the radius of gyration, and the characteristic ratio of a polymer chain are indicative of conformational changes from one environment to another and are in agreement with other findings in the literature. Scaling laws for the chain size with respect to the number of monomers are discussed. We show results for the intra- and intermolecular correlation functions and the medium-induced potential. We also extract the Kuhn length and the characteristic ratio for the infinite chain limit for melts. The latter is compared to the experimental results and computer simulation. The conformational free energy per monomer in different solvents is calculated. Our treatment can be generalized readily to other polymer-solvent systems, for example, those containing branched copolymers and polar solvents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.