Abstract

The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of much debate. This paper summarizes some of the essential ingredients of realistic and self-consistent models of solar wind acceleration. It also outlines the major issues in the recent debate over what physical processes dominate the mass, momentum, and energy balance in the accelerating wind. A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent models that assume the energy comes from Alfvén waves that are partially reflected, and then dissipated by magnetohydrodynamic turbulence, have been found to reproduce many of the observed features of the solar wind. This paper discusses results from these models, including detailed comparisons with measured plasma properties as a function of solar wind speed. Some suggestions are also given for future work that could answer the many remaining questions about coronal heating and solar wind acceleration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.