Abstract
ABSTRACT A new class of models of stellar discs is introduced and used to build a self-consistent model of our Galaxy. The model is defined by the parameters that specify the action-based distribution functions (DFs) f(J) of four stellar discs (three thin-disc age cohorts and a thick disc), spheroidal bulge and spheroidal stellar and dark haloes. From these DFs plus a specified distribution of gas, we solve for the densities of stars and dark matter and the potential they generate. The principal observational constraints are the kinematics of stars with Gaia Radial Velocity Spectrometer (RVS) data and the density of stars in the column above the Sun. The model predicts the density and kinematics of stars and dark matter throughout the Galaxy, and suggests the structure of the dark halo prior to the infall of baryons. The code used to create the model is available on github.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.