Abstract

A semiempirical model for carbon clusters modeling is presented, along with structural and dynamical applications. The model is a tight-binding scheme with additional one- and two-center distance-dependent electrostatic interactions treated self-consistently. This approach, which explicitly accounts for charge relaxation, allows us to treat neutral and (multi-) charged clusters not only at equilibrium but also in dissociative regions. The equilibrium properties, geometries, harmonic spectra, and relative stabilities of the stable isomers of neutral and singly charged clusters in the range n=1-14, for C(20) and C(60), are found to reproduce the results of ab initio calculations. The model is also shown to be successful in describing the stability and fragmentation energies of dictations in the range n=2-10 and allows the determination of their Coulomb barriers, as examplified for the smallest sizes (C(2) (2+),C(3) (2+),C(4) (2+)). We also present time-dependent mean-field and linear response optical spectra for the C(8) and C(60) clusters and discuss their relevance with respect to existing calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call