Abstract

Many macromolecules of biological and technological interest are both chiral and semi-flexible. DNA and collagen are good examples. Such molecules often form chiral nematic (or cholesteric) phases, as is well-documented in collagen and chitin. This work presents a method for studying cholesteric phases in the highly successful self-consistent field theory of worm-like chains, offering a new way of studying many biologically relevant molecules. The method involves an effective Hamiltonian with a chiral term inspired by the Oseen-Frank (OF) model of liquid crystals. This method is then used to examine the formation of cholesteric phases in chiral-nematic worm-like chains as a function of polymer flexibility, as well as the optimal cholesteric pitch and distribution of polymer segment orientations. Our approach not only allows for the determination of the isotropic-cholesteric transition and segment distributions, beyond what the OF model promises, but also explicitly incorporates polymer flexibility into the study of the cholesteric phase, offering a more complete understanding of the behavior of semiflexible chiral-nematic polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.