Abstract

A self-consistent field (SCF) theoretic approach, using a general excess Helmholtz energy density functional that includes a square gradient term, is derived for polymer melt surfaces and implemented for linear polyethylene films over a variety of temperatures and chain lengths. The formulation of the SCF plus square gradient approximation (SGA) developed is generic and can be applied with any equation of state (EoS) suitable for the estimation of the excess Helmholtz energy. As a case study, the approach is combined with the Sanchez–Lacombe (SL) EoS to predict reduced density profiles, chain conformational properties, and interfacial free energies, yielding very favorable agreement with atomistic simulation results and noticeable improvement relative to simpler SCF and SGA approaches. The reduced influence parameter invoked in the SGA to achieve accurate density profiles and interfacial free energies is consistent with the definition of Poser and Sanchez, J. Colloid Interface Sci. 1979, 69, 539–548. The ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.