Abstract

Local-density-approximation calculations of atomic structure are useful for the description of atoms and ions in plasmas. The large number of different atomic configurations that exist in typical plasmas leads one to consider the expression of total energies in terms of a Taylor series in the orbital occupation numbers. Two schemes for computing the second derivative Taylor-series coefficients are given; the second, and better one, uses the linear response method developed by Zangwill and Soven [Phys. Rev. A 21, 1561 (1980)] for the calculation of optical response in atoms. A defect in the local-density approximation causes some second derivatives involving Rydberg orbitals to be infinite. This is corrected by using a modified local-density approximation that had previously been proposed [Phys. Rev. B 2, 244 (1970)].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call