Abstract

We develop an electrothermal transport model for nanocomposite thin films based on self-consistent solution of drift-diffusion and Poisson equations for electrons coupled with diffusive transport of heat. This model is used to analyze the performance of an electronic display the pixels of which are controlled by carbon nanotube (CNT) network thin-film transistors (TFTs). The effect of electrothermal coupling on device performance and steady state temperature rise is analyzed as a function of key device parameters such as channel length, network density, tube-to-substrate thermal conductance, and tube-to-substrate thermal conductivity ratio. Our analysis suggests that device on-current Ion may reduce by 30% for a 1 μm channel length devices due to self-heating. The temperature rise in such devices can be as high as 500 K in extreme cases due to the thermally insulating substrate and the low tube-to-substrate thermal conductance. These results suggest that an appropriate combination of network density, channel length and width should be selected for CNT-TFTs to avoid device temperature rise above acceptable limits. We analyze the effectiveness of active cooling in reducing the temperature and enhancing the performance of the device. We find that the high thermal spreading resistance between the CNT device and the electronic display reduces the effectiveness of forced convective cooling, necessitating the exploration of alternative designs for viable CNT-FET based display technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.