Abstract
Abstract To date, modern three-dimensional (3D) supernova (SN) simulations have not demonstrated that explosion energies of 1051 erg (=1 bethe=1 B) or more are possible for neutrino-driven SNe of non/slow-rotating M < 20 M ⊙ progenitors. We present the first such model, considering a nonrotating, solar-metallicity 18.88 M ⊙ progenitor, whose final 7 minutes of convective oxygen-shell burning were simulated in 3D and showed a violent oxygen–neon shell merger prior to collapse. A large set of 3D SN models was computed with the Prometheus-Vertex code, whose improved convergence of the two-moment equations with Boltzmann closure allows now to fully exploit the implicit neutrino-transport treatment. Nuclear burning is treated with a 23-species network. We vary the angular grid resolution and consider different nuclear equations of state and muon formation in the proto-neutron star (PNS), which requires six-species transport with coupling of all neutrino flavors across all energy–momentum groups. Elaborate neutrino transport was applied until ∼2 s after bounce. In one case, the simulation was continued to >7 s with an approximate treatment of neutrino effects that allows for seamless continuation without transients. A spherically symmetric neutrino-driven wind does not develop. Instead, accretion downflows to the PNS and outflows of neutrino-heated matter establish a monotonic rise of the explosion energy until ∼7 s post-bounce, when the outgoing shock reaches ∼50,000 km and enters the He layer. The converged value of the explosion energy at infinity (with overburden subtracted) is ∼1 B and the ejected 56Ni mass ≲0.087 M ⊙, both within a few 10% of the SN 1987A values. The final NS mass and kick are ∼1.65 M ⊙ and >450 km s−1, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.