Abstract

Cosmic rays do not stream freely through the galaxy, contrary to earlier expectations. Streaming cosmic rays are slowed down by the emission of resonant Alfven waves that scatter the cosmic rays. The theory of self-confinement explains the isotropy of the bulk of the cosmic rays but not of cosmic rays above 103 Gev; it has been a stimulus to the theory for cosmic-ray acceleration at supernova shocks; and, on inclusion of diffusion in a galactic wind, it may explain the uniform cosmic-ray density out to 18 kpc in our galaxy. Rapidly streaming electrons in clusters of galaxies, in supernova remnants, and near solar flares are accomodated by the theory when it is expanded to include the effects of hot plasmas and other wave modes. A “resonance gap” may prevent the turning backwards of streaming particles and thus allow streaming near the particle speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.