Abstract

This paper prolongs the series of our previous papers where we found super-fast and super-deep introduction of foreign substances in crystalline materials by means of the ball rolling. A set of new experimental results was used to justify the new version of the mechanism of this introduction with the record speed and depth. The main process which determines this phenomena is connected with the sequence of openings and closings of nanocracks at the surface subjected to the rolling and the capture of the substance introduced from the surface by these cracks. The process of this introduction with the record parameters is supported by the intense chemical interactions between the matrix and the substance being introduced. This chemical interaction is intensified by several times with the deformation treatments. The analogous super-fast mass transfer is observed in the situation of the pulling out of the polystyrene fibers from the solution of polystyrene in benzene when the interaction of the organic components with cesium iodide nanoparticles was activated by the deformation treatment of the solution during its pulling out resulting in the formation of big amounts of nano-channels promising for effective utilization of hazardous radioactive wastes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call