Abstract

We numerically study the filamentation of ultrashort laser pulses at 2 microm carrier wavelength in noble gases (argon, xenon) and in air. Compared with filamentation in the near-visible domain (800 nm), mid-infrared optical sources with durations close to a single cycle can be generically produced at various pressures and powers near the self-focusing threshold. The mechanism by which self-compression takes place mainly involves optical self-focusing, pulse steepening and plasma defocusing. On-axis spectra and spectral phases are discussed. Delivering single-cycled pulses at long wavelengths has important applications in the generation of high-order harmonics and isolated attosecond pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.