Abstract

An efficient and practical method is proposed for the separation of oil–water mixtures and emulsions in sustainable water ecosystems, facilitating energy recovery. The construction of flexible ceramic fiber membranes with high throughput and self-cleaning capabilities has proven effective but challenging. This study reports a novel approach combining the sol–gel and electrospinning techniques to synthesize flexible silicon dioxide (SiO2)–titanium dioxide (TiO2) nanofiber membranes (STNFMs). These membranes possess nanoscale rough structures, granting them superhydrophilicity and underwater superoleophobicity (155°). Exploiting the photocatalytic properties of titanium dioxide, STNFMs-4 not only demonstrates excellent separation performance but also exhibits remarkable self-cleaning abilities. After 2 h of ultraviolet light irradiation, the membrane flux returns to its original level. STNFMs provide a promising solution for highly efficient separation of oil–water mixtures and emulsions, with the potential to play a significant role in water treatment and resource recovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.