Abstract

Remarkable advances in wearable electronics have brought numerous multi-functionalities in health monitoring, but demanded more power, necessitating larger batteries and frequent recharging. Replacement or recharging of batteries, however, poses undesirable downtime in health monitoring. Thermoelectrics are promising in sustainably supplying power by converting body heat but wearable thermoelectrics have not been capable of producing power large or stable enough for the continuous operation of commercial health monitoring sensors. Here synergistic integration of a wearable thermoelectric generator (WTEG) and an emerging Li-S battery has delivered power sustainably and continuously, overcoming the biggest hurdle in utilizing thermoelectrics for wearable electronics in practice. The major drawback of low thermoelectric output voltage for charging batteries has been greatly alleviated with the high-performance Li-S battery whose charging voltage is only a half those of Li-ion batteries. The WTEG continuously produces large power up to 378 µW, operating a commercial glucose sensor (64 µW) and storing the remainder in the Li-S batteries for providing a stable voltage of 2 V even under large fluctuations in power supply and demand. This work demonstrates feasibility of operating a commercial glucose sensor only with body heat for the first time, to our best knowledge, engendering sustainable operation of wearables without interruption and tedious recharging/replacement of batteries. Integrated wearable thermoelectric-battery system for a continuous glucose monitoring sensor and the infrared image of the integrated system worn on a human wrist. • Synergistically integrated wearable thermoelectric-battery system. • Demonstrated feasibility of operating a commercial glucose sensor only with body heat for the first time. • Designed high energy density Li-S batteries for wearables with 3D porous carbon nanotubes. • Developed self-sustainable and continuous health monitoring systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.