Abstract

Lightweight and flexible self-charging power systems with synchronous energy harvesting and energy storage abilities are highly desired in the era of the internet of things and artificial intelligences, which can provide stable, sustainable, and autonomous power sources for ubiquitous, distributed, and low-power wearable electronics. However, there is a lack of comprehensive review and challenging discussion on the state-of-the-art of the triboelectric nanogenetor (TENG)-based self-charging power textiles, which have a great possibility to become the future energy autonomy power sources. Herein, the recent progress of the self-charging power textiles hybridizing fiber/fabric based TENGs and fiber/fabric shaped batteries/supercapacitors is comprehensively summarized from the aspect of textile structural designs. Based on the current research status, the key bottlenecks and brighter prospects of self-charging power textiles are also discussed in the end. It is hoped that the summary and prospect of the latest research of self-charging power textiles can help relevant researchers accurately grasp the research progress, focus on the key scientific and technological issues, and promote further research and practical application process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call