Abstract

In the last two decades, mass timber structures have gained popularity in mid-rise or tall building applications worldwide. For timber buildings in seismic regions, it is critical to improve building seismic resilience. Conventional timber structures rely on connections for energy dissipation and system ductility. However, this dependence also carries the risk of damage, potentially resulting in structures that are irreparable in severe earthquakes. In this regard, as one of the low-damage seismic design technologies, self-centering (SC) techniques have been introduced to mass timber structures in 2005. The relevant research and applications have led to significant technological progress in the field. This paper provides an overview of recent research progress since 2019, encompassing experimental studies, analytical and numerical simulations, key design aspects, and practical applications of SC mass timber structures. It highlights recent technological advancements and identifies future research directions to address knowledge gaps identified in this review.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.